Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy.
نویسندگان
چکیده
The interaction of the adenylate cyclase catalytic domain (AC) of the Bordetella pertussis major exotoxin with its activator calmodulin (CaM) was studied by time-resolved fluorescence spectroscopy using three fluorescent groups located in different regions of AC: tryptophan residues (W69 and W242), a nucleotide analogue (3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, Ant-dATP) and a cysteine-specific probe (acrylodan). CaM binding elicited large changes in the dynamics of W242, which dominates the fluorescence emission of both AC and AC-CaM, similar to that observed for isolated CaM-binding sequences of different lengths [Bouhss, A., Vincent, M., Munier, H., Gilles, A.M., Takahashi, M., Bârzu, O., Danchin, A. & Gallay, J. (1996) Eur. J. Biochem.237, 619-628]. In contrast, Ant-dATP remains completely immobile and inaccessible to the solvent in both the AC and AC-CaM nucleotide-binding sites. As AC contains no cysteine residue, a single-Cys mutant at position 75 was constructed which allowed labeling of the catalytic domain with acrylodan. Its environment is strongly apolar and rigid, and only slightly affected by CaM. The protein's hydrodynamic properties were also studied by fluorescence anisotropy decay measurements. The average Brownian rotational correlation times of AC differed significantly according to the probe used (19 ns for W242, 25 ns for Ant-dATP, and 35 ns for acrylodan), suggesting an elongated protein shape (axial ratio of approximately 1.9). These values increased greatly with the addition of CaM (39 ns for W242, 60-70 ns for Ant-dATP and 56 ns for acrylodan). This suggests that (a) the orientation of the probes is altered with respect to the protein axes and (b) the protein becomes more elongated with an axial ratio of approximately 2.4. For comparison, the hydrodynamic properties of the anthrax AC exotoxin were computed by a mathematical approach (hydropro), which uses the 3D structure [Drum, C.L., Yan, S.-Z., Bard, J., Shen, Y.-Q., Lu, D., Soelalman, S., Grabarek, Z., Bohm, A. & Tang, W.-J. (2002) Nature (London)415, 396-402]. A change in axial ratio is also observed on CaM binding, but in the reverse direction from that for AC: from 1.7 to 1.3. The mechanisms of activation of the two proteins by CaM may therefore be different.
منابع مشابه
Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin
Adenylate cyclase toxin domain (CyaA-ACD) is a calmodulin (CaM)-dependent adenylate cyclase involved in Bordetella pertussis pathogenesis. Calcium (Ca2+) and magnesium (Mg2+) concentrations impact CaM-dependent CyaA-ACD activation, but the structural mechanisms remain unclear. In this study, NMR, dynamic light scattering, and native PAGE were used to probe Mg2+-induced transitions in CaM's conf...
متن کاملInhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin.
Bordetella pertussis and Bacillus anthracis produce extracytoplasmic adenylate cyclase toxins (AC toxins) with shared features including activation by calmodulin and the ability to enter target cells and catalyze intracellular cyclic AMP (cAMP) production from host ATP. The two AC toxins were evaluated for sensitivities to a series of inhibitors of known uptake mechanisms. Cytochalasin D, an in...
متن کاملStructural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin.
CyaA is crucial for colonization by Bordetella pertussis, the etiologic agent of whooping cough. Here we report crystal structures of the adenylyl cyclase domain (ACD) of CyaA with the C-terminal domain of calmodulin. Four discrete regions of CyaA bind calcium-loaded calmodulin with a large buried contact surface. Of those, a tryptophan residue (W242) at an alpha-helix of CyaA makes extensive c...
متن کاملCalmodulin activates prokaryotic adenylate cyclase.
The adenylate cyclase of Bordetella pertussis is stimulated 100- to 1000-fold in a dose-dependent manner by calf brain calmodulin. The system has the following properties. (i) The activation is prevented by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and restored by Ca2+. (ii) Oxidation of the methionine residues of calmodulin abolishes the ability to activate the cycl...
متن کاملSite I Inactivation Impacts Calmodulin Calcium Binding and Activation of Bordetella pertussis Adenylate Cyclase Toxin
Site I inactivation of calmodulin (CaM) was used to examine the importance of aspartic acid 22 at position 3 in CaM calcium binding, protein folding, and activation of the Bordetella pertussis adenylate cyclase toxin domain (CyaA-ACD). NMR calcium titration experiments showed that site I in the CaM mutant (D22A) remained largely unperturbed, while sites II, III, and IV exhibited calcium-induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of biochemistry
دوره 271 4 شماره
صفحات -
تاریخ انتشار 2004